ACS 500™ AC Drive
connection to SLC 500 PLC™

ABB Drives has variable frequency drives from 1 Hp up to 400 Hp. This application note demon-
strates the ProSoft Technologies 1150-MBM Modbus Master product to connect Allen-Bradley
SLC 500 PLCs using serial communication to ACS 500 standard AC drives.

Application Description

To address the need to connect ABB standard AC drives
to SLC 500 PLCs, ABB Drives and ProSoft Technolo-
gies, Inc. have introduced a serial Modbus solution for
the 1746 platform.

In this note we will concentrate on a very common
application: interfacing the A-B SLC 500 PLC to 4
ACS 500 drives using a RS-485 serial interface.

In most of the serial interface connections to the
ACS 500 drive, the application wants to control the
drive speed, and to start and stop the drive remotely.
Most of the data being received back from the drive is
contained in the operational data area, which includes
information like frequency actual, current actual, and
torque actual. In some cases drive setup variables also
need to be modified. The most typical one being accel-
eration or deceleration rate.

In this application note, the following information is

sent down to the drive:
» Drive Frequency reference (40,013)
¢ Drive Start and Stop commands (45,102)

The following information is read back from the drive:

e Drive Output frequency (40,001)

e Motor current (40,003)

* 9% Rated torque (40,004)

* Drive status, including drive ready, running, and
faulted information (45,101)

The read data transfer is pre-built into a fixed polling
list. The frequency reference and the drive start and stop
commands are also written to the drives using the poll
list.

Performance

Typically there can be on an average 9.5 messages per
second on one Modbus serial link to ACS 500 Drives.

In this example we have two reads and two writes for
each onc of the drives, with a total number of four
drives. This means that our poll-list has 4*(2+2) = 16
messages. With 9.5 messages per second, it will take 1.7
seconds to complete the whole list.

Example Applications

Applications involving the Modbus connection can be
found in many industrial sectors. This solution is not
intended for building mechanically connected systems,
but is suited for applications where

e Discrete wiring cost would be reduced.

e Increased information from the drives is needed
beyond the 2 Analog and 3 Digital signals available
on the drive.

e Performance is suitable for the application.

Control performance can be improved by mixing dis-
crete-1/O control with serial communication.

Solution Overview

This solution is done using the standard ACS 500 drives

with the CRUOQ3E firmware revision, and insertion of

the 1150-MBM firmware chip into a 1746-BAS module.

In a typical implementation, the following steps are

needed for a successful implementation:

e Install firmware and configure the 1746-BAS hard-
ware

e Decide the use of memory in the basic module

e Decide the use of memory in the PLC

¢ Identify the command list

e Identify the module configuration parameters

e Develop ladder logic

¢ Program the ACS 500 drives

e Wire the drives to the PLC

Install and Configure Hardware

The 1150-MBM is shipped as an EPROM chip which
needs to be placed into the U18 User Socket. Align the
notches on the EPROM plastic carrier with the notches
in the User socket. Make sure the EPROM is well
seated.

Set the jumpers on the 1746-BAS module

e JW1 Across 7-8 and 9-10 (RS-485)

e JW3 Across 3-5 and 4-6 (Enable software)
e JW4 Across 1-3 and 2-4

Memory on Basic Module

Communication between the SLC 500 and the protocol
module occur through the backplane through COP
instructions. Data is transferred between the module and
the PLC in blocks, with the first word in a block being a
Block Identifier followed by data. Every block has its
own use.

The Blocks are classified as follows:
 Data[0-79]

e Command [80 —99]

o Event Initiated Writes [100 — 119]
e Configuration [255]

e Error codes [253, 254]

The data blocks [0 — 79] are especially important. There
are a total of 80 data blocks, each with a length of 50
words, totalling 4000 registers.

This is the area where data from the PLC is written for a
subsequent transmission to the drives, and where the
data received from the drives is stored for later transmis-
sion to the PLC.

Communication module

PLC Reads Data from drive(s)
-
- -
—_— ———i
PLC Writes Write to drive(s)

The data is transferred independently from the commu-
nication module to the drives, and from the communica-
tion module to the PLC. The addresses on the
communication module buffer do not match the actual
drive addressees.

Read data buffer

Memory on PLC

The PLC has all the data needed stored into its integer
files. This data includes the configuration information
for the communication module, as well as the actual
control and feedback data. To simplify, the different
uses are divided into separate integer files for clarity.

nfiguration N7:0 -NT7:10
This is explained in the following section.
Write data buffer N7:50 - N7:101

This is used for storing the data to be written to the
communication module.

Command status N7:110

These words are used to store the return statuses
received from the module.

N7:150 - N7:201

This is used to receive the data from the communi-
cation module.

Write data to slave N10:0 - N10:49
These 50 words are set for the Block ID #0 for the
data to be written to the drive during a command
list write command. These words cormrespond to
addresses 0 — 49 in the communication module.

N9:0 — N9:149

This list contains the first fifteen available com-
mands for the module.

Read data from slave N10:50 — N10:99
For this application, the data read from the drives
starts at address 50 and goes to 100. This corre-
sponds to Block ID #1. The first block is reserved
for write message data.

Command list

Identify command list

The command list for the module lists all the reads and
writes which the modbus master module will execute in
sequence. In this case one way to make the command

list is:

Command list

Example for a write:

° Row N9:110 — N9:115 defines one write

* Message number 12

e Write to drive 4

* Use modbus command 6, write one register

* Get the data from register 7 in the communication
master

e Write one parameter 1

° Write to 5101 (= 45102 - 40000 - 1)

Example for a read:

e Row N9:20 — N9:25 defines one read

¢ Message number 3 (N20:0)

¢ Read from drive 3 (N9:21)

* Using modbus command 3 (N9:22, read registers)

» Starting from address 40001 (N9:23 = 40001 -
40000 - 1)

¢ Four parameters (N9:24)

» Place the read parameters into registers starting
from 70 (N9:25).

0 1 2 3 4 5
N9:0 1 1 3 0 4 50 Module Configuration
N9:10 2 2 3 0 4 60 The module configuration has the major communication
N9:20 3 3 3 0 4 70 setups. This is in table N7:0 — N7:10.
N9:30 4 4 3 0 4 80 Module Configuration
N9:40 5 1 6 0 1 12 0,5 1,6 | 2,7 | 3,8 4,9
N9:50 6 2 6 1 1 12 N7:0 2 1 5 0 8
N9:60 7 3 6 2 1 12 N7:5 5 4 0 4096 0
N9:70 8 4 6 3 1 12 N7:10 0 - - - -
N9:80 9 1 6 4 1 5101
This table has in the example the following information:
N9:90 10 2 6 5 1 5101 ° N7:0 Parity: 2 (Even)
N9:100 1 3 6 6 1 5101 e N7:1 Stop bits: 1 (One stop bit)
e N7:2 Baud rate: 5 (9600 Baud)
N9:110 12 4 6 7 1 | 5101 e NT7:3RTS to TxD delay: 0
e N7:4 RTS Off-delay: 8
N9:120 13 1 3 5100 1 55
e N7:5 Data block count: 5
N9:130 14 2 3 5100 1 65 ¢ N7:6 BT Count per poll 4
e N7:7 Poll list delay: O :
N9:140 15 3 3 5100 1 s ° N7:8 Message response Time-out: 4096 (~ 250 ms)
N9:150 | 16 | 4 3 |s100f 1 | 85 * N7:9 Poll list delay: 0
° N7:10 RTU/ASCIH Mode: 0 (RTU)

A more detailed description of these options is in the
user’s manual. On the ACS 500 drive, RTU mode must
be selected. Also, the value of RTS Off-delay must be
set correctly corresponding to the selected Baud rate.

Data in PLC

The data in the PLC is in the example in two Blocks.
Block 0 is for the data to be written to the drives, and
Block 1 is used for the data being read from the drives.

In this example, the datais in the following registers:

Write Frequency reference to drives

0 1 2 3

N10:0 Refl Ref2 Ref3 Ref4

Write Start / Stop command to drives

4 5 6 7

N10:4 SS1 SS2 SS3 SS4

The references are in registers N10:0 — N10:3. The val-
ues are integers, where a value of 100 corresponds to
1.00 Hz. To send a reference of 12.34 Hz to drive num-
ber 2, place a value of 1234 to N10:1.

The start and stop controls are in registers N10:4 —
N10:7. Each drive has in this example its own individual
start and stop control. To start the drive, place a value 16
to the corresponding register. A value of 0 will stop the
drive.

The drive actual values are in the following registers:

Drive actual values

0 1 2 3
N10:50 Frq Spd Curr Torq
N10:60 Frq Spd Curr Torq
N10:70 Frq Spd Curr Torq
N10:80 Frq Spd Curr Torq

Drive Status

N10:55 | N10:65 | N10:75 | N10:85

Drvl Drv2 Drv3 Drv4

The actual values for drive 2 are in N10:60 — N10:63.
N10:60 is the actual frequency, N10:61 is the drive
speed, N10:62 is the motor current, and N10:63 is the
torque.

The drive statuses are also stored in the N10 table. The
status for drive 2 is in N10:65.

Ladder Logic

The PLC must be programmed and configured to
include the communication in between the PLC and the
communicaton module. An example ladder code for
this example is:

ABB Drives, SLC 300 interface
Program Listing Processor File: ORIGINAL.ACH

July 12, 1994 Page 1
Rung 2:0

Rung 2:0
The communication module configuration 18 gent after the first PLC scan, or
when the module identifies it needs to be configured.

The ¥7:49/0 bit is latched here, and cleared once the configuration 1§ sent
down to the module.

| True en set the !
| tirst send |
| scan contigur. |
X data bit |
i s:1 N7:49 I
R B DT e (L)==-me [
1 15 [o i
[Test the) |
i read block 1 '
[id number i [
|1 SEQUesesmemsnsonen .t '
1 +~+EQUAL e-a 1
| 1Source A N7:150] l
[2531 1
| isource B 2551 1
[| |
| emmmmemmmmmsammomaos '
Rung 2:1

BT WRITE DATA AND CONFIGURATION ENCODING

The BTW Dsta Block (N7:50) 1s incremented prior to each BTW commsnd being
executed. If the card configuration is activated. then 255 ie written into the
BTW block ID. To add additionsl block IDs. change EQU valuas.

This sends data blocks 0, and command blocks 80, 81, 82, and 83.

1 WRITE IWRITE Increment 1
| ENABLE IDONE BT Write 1
| to module Ito module Block 10 I
1 1:1 0:1 SADD=-mmmemmm e annn .o 1
[B EERT R B et L e EE R P +ADD smeel
! o] I | source A N7:501 1 |
1 1 1 o1 11
' ! I source B PN
1 I 1 [
1 1 1Dest B7:501 | |
i 1 1 o1 11
[U eeemmemmeeemeen s
i 1 Compare set the L]
l 1 BT Write BT Write [
[' Block ID Block ID [
1 | SEQU-s=m--mmneneen 4 AMOV--ooommeeany [
l +-eEQUAL +-sMOVE ome 1
1 ! 1Source A N7:501 |Source 801 1 |
i L] o1t [
1 | Isource B 11 IDest N7:501 1 1
i [1ot o1 1
' | $memcmmmmmeee e D R L e e |
| 1
ses soe

ABB Drives, SLC 500 interface

Program Listing processor File: ORIGINAL.ACH Rung 2:1
son e
| '
i | Compare set the '
' 1 BT Write BT Write (]
' 1 Block ID Block ID [
i | $GEQ---=--=n----san 4 SMOV---omeccmacanans (]
1 +-4GRTR THAN OR EQUAL<-+MOVE a-e 1
i 1 Isource A u7:501 |Source o1 I 1
1 [[A [N}
' | isource B 841 tDest w7:501 1 1
1 I o o1 11
i | smmmmmmmememeeaaes Bemmemcmmasmecmaas |
1 | Contag set the [
! | gata BT Write [
1 | to be sent Block ID [
1 | active it
1 | N7:49 SMOV---omommmmnnmnn O
! emmmm} fmmmmemommemmans Move et
1 o 1Source 2551 I
1 ! ! 1
' I Dost w7:501 1
| i ol 1
'

Rung 2:2
WRITE DATA AND CONFIGURATION DATA TO MODULE

Based on the value in the BTW Block ID, move the data into the BT Write buffer
area starting at N7:51. N7:50 1@ the Block ID number. and 1s set on the rung

above.

To move additional data, add sdditional decoding brances.

| WRITE IWRITE Compare Transfer 1
| ENABLE 1 DONE BT wWrite data to i
I to module (to module Block ID BT write '
! but ter 1
' 0:1 L T ~e=4 6COP-=m-mcmemnmmnan o
i R A e b +-+EQUAL +-4COPY FILE o-s-l
1 0 | Isource A N7:501 iSource $N10:01 | |
! | Ol iDest 8N7:511 { |
i ! Isource B 01 iLength so1 11
¢ 11 | 4mcceemecccceccaan PO
! ! [
! [Transfer t
! 1 data to 1
| ! BT write [
1 I buf fer 1t
1 | sEQU--=------ sss=-4 4COP=---cccccooooon s
i +-+EQUAL +-4COPY FILE 4=e 1
1 | ISource A N7:50] |Source #N9:01 | |
! [0l IDest N7:514 | |
| | Isource B 801 ILength S0t
! [[it s
1 [R . 1
| I
oen ves
ABB Drives. SLC 500 interface July 12, 199¢ Page 3
Progrem Listing Processor File: ORIGINAL.ACH Rung 2:2
res s
| !
1 | Compare Transter [
! 1 BT Write data to [
| ! Block 1D BT Write 1
1 1 butter [
I | #EQU-=-smeenscouoccs 4COP-scecmnccnmamns o
1 +-+EQUAL +-4COPY FILE o
1 | ISource A N7:50] ISource [
i [01 1Dest [
i | Isource B 811 iLength [
! | R et LR [
! [. i
| ! Compare Transfer (]
i ll BT Write data to L}
1 [Block 1D BT wWrite [
1 1 butfer 1
1 | $EQU-=-===cecmmonann ¢ 4COP=----omn —emeee- s
) «-+EQUAL +-+COPY FILE P
[| 1Source A N7:501 |Source #N9:1001 | |
l [l 01 1Dest N7:511 1
1 ! isource B 821 iLength s0) 1 1
1 I] emememmeemmeenen D
) 1 (]
1 1 Transfer [
1 ' BT wWrite data to [
i 1 Block ID BT Write L]
1 1 buffer [
1 | $EQU-=--cs-sen-n “emes 4COP-cmm-o--so-o EERET I
1 +-+EQUAL +-+COPY FILE PR
1 | 1Source A N7:501 |Source AN9:1501 | |
1 [o1 1Dest 8N7:51) 1 1
1 I iSource B 831 ILength 501 1 1
1 1 ' (]
i [RN o
I 1 Compare Transter [
1 1 BT wWrite data to 1
' 1 Block ID BT wWrite [
i 1 butfer [
t ! ol
1 +-+EQUAL +-4COPY FILE |
1 Isource A N7:501 |Source eN7:01 1
1 | 0l IDest #N7:511 1
| Isource B 2551 iLength 151
| 1 | ememmmemmmm—aena . 1
i P LR T RPN . |

ABB Drives, SLC 500 interface

Program Listing Pr rile: L.ACH

Rung 2:3
BT WRITE
“"Block Transfer® Write to the module.

The Block transfer is taking the data from a fixed buf
and having a fixed length of 51. This is why the actua
into this buffer area in the two rungs above.

| WRITE WRITE
| EMABLE DONE

| to module to module

[1:1 o:1

Pomes] [amemsamncocnnan et P EEREe ceeeee
' o | °

! '

! |

! 1

1 I Compare

1 1 BT wWrite

! i 8lock ID

i i

! '

! | SEQU-===m=cmeecmann
i +-+EQUAL

1 I Isource A u7:50
' [o
1 | isource B 255
! [}

1 l

! !

i t

| 1

! I

|

1

er” Read from the module.

July 12, 1994 Page 4

Rung 2:3

ter starting at N7:50.
1 data was transferred

~-+COPY FILE
| source

. N7:49

1 o

o

The resd dats 18 placed into & fixed buffer starting at N7:150. The N7:150 is
the Block ID number for the data being read, and the following words contain

the actual data received.

| READ 1READ
| ENABLE | DONE

[

1 I:1 ©:1

[B D e LS R
1 1 1

ABB Drives, SLC 500 intertace
Program Listing Processor File: ORIGINAL.ACH

Rung 2:5
MOVE DATA AND ERROR STATUS FROM THE MODULE

BT READ 1

FROM 1
NoDULE '
+COP---=mmmeman B |
+-4COPY PILE sment
| Isource M1:1.01 | |
! |Dest #M7:150) | |
| ILength s41 1 1
b ammmmmmmem oo .1
| READ [
| DONE [
! 0:1 [
R mevmesmscens |
1 !

July 13. 1994 Page S
Rung 2:5

After the Block Transfer read 1is complete. place the returned data into the

correct areas in the PLC. In this example

one Block ID ie read (R7:150 = 1).

and the data is placed to buffer at N10:50 - N10:99. The BT Read Error status

is returned, and stored to buffer W7:110.
To add more blecks, add a EQU and COP branch.

| READ Test the
1 DORE resd block
id number
o:1 CEQU-c-=ccmmmmenean
-1l
1 | Source A N7:150
I 253
ISource B 1

|
1
i
!
!
| Test the
1
1
1
.

read block
id number
SEQU-=m=mmmmmmmmmm o
~+EQUAL
ISource A N7:150
1 253
Isource B 253

Block ID
1 datas
+ eQOP-mmmmm oo .
+=-+COPY FILE b
i isource #N7:1521 |
| 1Dest #N10:501
| ilength 501

.

1
¥
'
1
1
Error i
1
1
.

BT Read

Block
4 4COP-mmmmmaane e .
+-4COPY FILE .-
| |source #N7:1521
| I1Dest 8H7:1101
! ILength 101

1
1
I
I
I
|
|
I
I
i
1
1
1
1
U
1
i
1
1
1

1

Program the ACS 500

The ACS 500 drives need to be programmed for this
application. In this case we wanted to use serial commu-
nication to both start and stop the drive, and to control
the drive frequency.

To do this, the following steps will setup the drive prop-

erly:

* Load the factory macro

e Set the drive to EXTERNAL control. (Operational
data parameter 9)

e Set 10.1.1 EXT 1 STRT/STP/DIR to STD COMM.
This enables the start and stop control using serial
communication.

e Set 10.2.2 EXTERNAL REF1 SEL to
STD COMM. This enables the frequency reference
to be sent using serial communication.

e Set 10.8.1 DRIVE ID-NUMBER to a number 1, 2,
3, or 4. Each drive on this example has to have a
unique modbus station address.

¢ Set 10.8.2 PROTOCOL to MODBUS. If the previ-
ous value was GS-BUS, power the drive down and
up to make the change.

e Set 10.8.3 BIT RATE SELECT to 9600.

e Set 10.8.4 PARITY to EVEN

e Power the drive down, and back up again. The
changes in the group 10.8 take effect only on drive
power up sequence.

Wiring
The communication master module needs to be con-
nected to the drives using a serial cable. The cable

makeup necessary to interface with the drives is:

ACS 500 Drive, X51
1746-BAS

7 RTS
8 CTS

To second
drive

5GND
9 TxD+

1 TxD-

In the modbus communication manual for the ACS 500
there are detailed description for wiring, grounding, and
for proper termination of communication cable.

Contact

The 1150-MBM firmware is a ProSoft Technologies
product, and needs to be ordered from them. Also
ProSoft has a Technical Support line for questions on
using the 1150-MBM firmware on the 1746-BAS mod-
ule.

Order Placement, 1150-MBM

ProSoft Technologies

Kim Tatman, Office Manager
(805) 327 7066 / Phone

(805) 327 7322 / Fax

Technical Support, 1150-MBM

ProSoft Technologies
Wilbur Wong, Applications Engineer
(800) 326 7066 / Phone

Sales Support, South East US
Janice Hungerford, Account Manager
(713) 999 7565 / Phone
(713) 999 0823 / Fax

Sales Support, All other locations

Kim Tatman, Office Manager
(805) 327 7066 / Phone
(805) 327 7322 / Fax

Technical Support, ACS 500 Drives

ABB Drives
Standard Drives Tech Support
(800) 243 4384

Sales, ACS 500 Drives

ABB Standard and Process Drives
Cathy Holms
(414) 785 3416

All trade names referenced are trademarks or registered
trademarks of their respective companies.

©1964 Printed in USA ST-271

AR

ABB Industrial Systems Inc.
Standard Drives Division
16250 W. Glendale Drive
New Berlin, Wi 53151-2840

Tel: (414)785 3416
(800) 752 0696
Fax: (414) 7850397

